p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.96D4, C25.46C22, C23.383C24, C24.575C23, C22.1862+ 1+4, C23.612(C2×D4), C24⋊3C4.10C2, (C23×C4).95C22, C23.8Q8⋊62C2, C23.305(C4○D4), C23.34D4⋊30C2, C23.11D4⋊25C2, C2.10(C23⋊3D4), (C22×C4).520C23, C22.263(C22×D4), C2.C42⋊25C22, C2.26(C22.45C24), C22.62(C22.D4), (C2×C4⋊C4)⋊20C22, C22.260(C2×C4○D4), (C22×C22⋊C4).13C2, C2.28(C2×C22.D4), (C2×C22⋊C4).461C22, SmallGroup(128,1215)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.96D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, ab=ba, faf-1=ac=ca, ad=da, eae-1=acd, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde-1 >
Subgroups: 756 in 350 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C25, C24⋊3C4, C23.34D4, C23.8Q8, C23.11D4, C22×C22⋊C4, C24.96D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C22.D4, C23⋊3D4, C22.45C24, C24.96D4
(2 18)(4 20)(5 15)(6 22)(7 13)(8 24)(9 16)(10 23)(11 14)(12 21)(25 32)(27 30)
(1 31)(2 18)(3 29)(4 20)(5 15)(6 9)(7 13)(8 11)(10 23)(12 21)(14 24)(16 22)(17 28)(19 26)(25 32)(27 30)
(1 28)(2 25)(3 26)(4 27)(5 21)(6 22)(7 23)(8 24)(9 16)(10 13)(11 14)(12 15)(17 31)(18 32)(19 29)(20 30)
(1 31)(2 32)(3 29)(4 30)(5 15)(6 16)(7 13)(8 14)(9 22)(10 23)(11 24)(12 21)(17 28)(18 25)(19 26)(20 27)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 16 31 6)(2 21 32 12)(3 14 29 8)(4 23 30 10)(5 18 15 25)(7 20 13 27)(9 17 22 28)(11 19 24 26)
G:=sub<Sym(32)| (2,18)(4,20)(5,15)(6,22)(7,13)(8,24)(9,16)(10,23)(11,14)(12,21)(25,32)(27,30), (1,31)(2,18)(3,29)(4,20)(5,15)(6,9)(7,13)(8,11)(10,23)(12,21)(14,24)(16,22)(17,28)(19,26)(25,32)(27,30), (1,28)(2,25)(3,26)(4,27)(5,21)(6,22)(7,23)(8,24)(9,16)(10,13)(11,14)(12,15)(17,31)(18,32)(19,29)(20,30), (1,31)(2,32)(3,29)(4,30)(5,15)(6,16)(7,13)(8,14)(9,22)(10,23)(11,24)(12,21)(17,28)(18,25)(19,26)(20,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,16,31,6)(2,21,32,12)(3,14,29,8)(4,23,30,10)(5,18,15,25)(7,20,13,27)(9,17,22,28)(11,19,24,26)>;
G:=Group( (2,18)(4,20)(5,15)(6,22)(7,13)(8,24)(9,16)(10,23)(11,14)(12,21)(25,32)(27,30), (1,31)(2,18)(3,29)(4,20)(5,15)(6,9)(7,13)(8,11)(10,23)(12,21)(14,24)(16,22)(17,28)(19,26)(25,32)(27,30), (1,28)(2,25)(3,26)(4,27)(5,21)(6,22)(7,23)(8,24)(9,16)(10,13)(11,14)(12,15)(17,31)(18,32)(19,29)(20,30), (1,31)(2,32)(3,29)(4,30)(5,15)(6,16)(7,13)(8,14)(9,22)(10,23)(11,24)(12,21)(17,28)(18,25)(19,26)(20,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,16,31,6)(2,21,32,12)(3,14,29,8)(4,23,30,10)(5,18,15,25)(7,20,13,27)(9,17,22,28)(11,19,24,26) );
G=PermutationGroup([[(2,18),(4,20),(5,15),(6,22),(7,13),(8,24),(9,16),(10,23),(11,14),(12,21),(25,32),(27,30)], [(1,31),(2,18),(3,29),(4,20),(5,15),(6,9),(7,13),(8,11),(10,23),(12,21),(14,24),(16,22),(17,28),(19,26),(25,32),(27,30)], [(1,28),(2,25),(3,26),(4,27),(5,21),(6,22),(7,23),(8,24),(9,16),(10,13),(11,14),(12,15),(17,31),(18,32),(19,29),(20,30)], [(1,31),(2,32),(3,29),(4,30),(5,15),(6,16),(7,13),(8,14),(9,22),(10,23),(11,24),(12,21),(17,28),(18,25),(19,26),(20,27)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,16,31,6),(2,21,32,12),(3,14,29,8),(4,23,30,10),(5,18,15,25),(7,20,13,27),(9,17,22,28),(11,19,24,26)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 4A | ··· | 4P | 4Q | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C24.96D4 | C24⋊3C4 | C23.34D4 | C23.8Q8 | C23.11D4 | C22×C22⋊C4 | C24 | C23 | C22 |
# reps | 1 | 1 | 4 | 4 | 4 | 2 | 4 | 16 | 2 |
Matrix representation of C24.96D4 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 3 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C24.96D4 in GAP, Magma, Sage, TeX
C_2^4._{96}D_4
% in TeX
G:=Group("C2^4.96D4");
// GroupNames label
G:=SmallGroup(128,1215);
// by ID
G=gap.SmallGroup(128,1215);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,723,100,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^-1>;
// generators/relations